Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

An improved local blow-up condition for Euler–Poisson equations with attractive forcing

Bin Cheng^a, Eitan Tadmor^{b,*}

^a Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

^b Department of Mathematics, Institute for Physical Science and Technology and Center of Scientific Computation And Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD 20742, USA

which leads to a finite-time breakdown of the Euler–Poisson equations in arbitrary dimension *n*.

ARTICLE INFO

Article history: Received 10 February 2009 Received in revised form 28 July 2009 Accepted 5 August 2009 Available online 19 August 2009 Communicated by K. Promislow

Keywords: Euler–Poisson equations Critical thresholds Finite time blow-up

1. Introduction

The pressure-less Euler–Poisson (EP) equations in dimension $n \ge 1$ are

 $\rho_t + \operatorname{div}\left(\rho \mathbf{u}\right) = 0 \tag{1.1a}$

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = k \nabla \Delta^{-1} (\rho - c), \qquad (1.1b)$$

governing the unknown density $\rho = \rho(t, x) : \mathbb{R}_+ \times \mathbb{R}^n \mapsto \mathbb{R}_+$ and velocity $\mathbf{u} = \mathbf{u}(t, x) : \mathbb{R}_+ \times \mathbb{R}^n \mapsto \mathbb{R}^n$ subject to initial conditions $\rho(0, x) = \rho_0(x)$ and $\mathbf{u}(0, x) = \mathbf{u}_0(x)$. They involve two constants: (i) a fixed background state $c \ge 0$ – typical cases include the case of zero background, c = 0, or the case of a nonzero background given by the average mass, $c = \int \rho(t, x) dx = \int \rho_0(x) dx$; and (ii) a constant k which parameterizes the repulsive k > 0 or attractive k < 0 forcing, governed by the Poisson potential $\Delta^{-1}(\rho - c)$. The EP system appears in numerous applications including semiconductors and plasma physics (k > 0) and the collapse of stars due to self gravitation (k < 0) [1–4]. In particular, the pressureless EP model becomes relevant in interstellar clouds where gravitional

URLs: http://www.umich.edu/~bincheng (B. Cheng), http://www.cscamm.umd.edu/~tadmor (E. Tadmor).

A B S T R A C T We improve the recent result of Chae and Tadmor (2008) [10] proving a one-sided threshold condition

> forces dominate pressure gradient, [5], for example, or in the context of the Euler-Monge-Ampère systems and their quasi-neutral

© 2009 Elsevier B.V. All rights reserved.

limits to the *incompressible* Euler equations [6]. This paper is restricted to the *attractive case*, k < 0. We begin by setting c = 1, k = -1 in (1.1a), (1.1b) to arrive at the unit-free EP system,

$$\rho_t + \operatorname{div}\left(\rho \mathbf{u}\right) = 0,\tag{1.2a}$$

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \Delta^{-1} (\rho - 1). \tag{1.2b}$$

Our discussion remains valid for the general physical parameters $c \ge 0$, k < 0 upon a simple rescaling and limiting arguments, outlined in Corollary 1.1 below for c > 0 and Corollary 1.2 for the case of zero background c = 0.

We are concerned here with the persistence of C^1 regularity for solutions of the attractive EP system. Our Main theorem reveals a *pointwise* criterion on the initial data, a so-called critical threshold criterion [7–9], that leads to finite time blow-up of $\nabla \mathbf{u}$. It quantifies the balance between the two term div \mathbf{u} and ρ , which govern two competing mechanisms that dictate the C^1 regularity of EP flows. Our result also stands out as a generalization of several existing results [7,10,11,9] for which further discussion is given after the Main theorem and its corollary.

Main Theorem 1.1. Consider the n-dimensional, attractive Euler– Poisson system (1.2a), (1.2b) subject to initial data ρ_0 , \mathbf{u}_0 . Then, the solution will lose C^1 regularity at a finite time $t = t_c < \infty$, if there exists a non-vacuum initial state $\rho_0(\bar{x}) > 0$ with vanishing initial

^{*} Corresponding author.

E-mail addresses: bincheng@umich.edu (B. Cheng), tadmor@cscamm.umd.edu (E. Tadmor).

^{0167-2789/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.physd.2009.08.008

vorticity, $\nabla \times \mathbf{u}_0(\bar{x}) = 0$, at some $\bar{x} \in \mathbb{R}^n$ such that the following sup-critical condition is fulfilled,

div
$$\mathbf{u}_0(\bar{x}) < \text{sgn}(\rho_0(\bar{x}) - 1)\sqrt{nF(\rho_0(\bar{x}))},$$
 (1.3a)

where

$$F(\rho) := \begin{cases} 1 + \frac{2\rho}{n-2} - \frac{n\rho^{2/n}}{n-2}, & n \neq 2, \\ 1 - \rho + \rho \ln \rho, & n = 2. \end{cases}$$
(1.3b)

In particular, $\min_x \operatorname{div} \mathbf{u}(t, x) \to -\infty$ and $\max_x \rho(t, x) \to \infty$ as $t \uparrow t_c$.

Proof. Combine Lemmas 3.1 and 4.2, while noting that the curve

div $\mathbf{u} = \operatorname{sgn}(\rho - 1)\sqrt{nF(\rho)},$

is the separatrix along the boundary of the blow-up region $\Omega = \Omega_1 \cup \Omega_2$ defined in (4.3) and illustrated in Fig. 4.1. \Box

We note in passing that, by classical arguments, the force-free Euler system $\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u} = 0$ exhibits finite time blow-up if and only if there exists at least one *negative* eigenvalue of $\nabla \mathbf{u}_0(\bar{x})$. In the above theorem, however, finite-time blow-up can occur solely depending on the initial profile of div \mathbf{u}_0 and ρ_0 regardless of individual eigenvalues of $\nabla \mathbf{u}_0$.

We also note that, by rescaling ρ to ρ/c , x to $\sqrt{-kc} x$ and t to $\sqrt{-kc} t$, the Main theorem immediately applies to the EP system (1.1a), (1.1b) with physical parameters. Since the EP system with k < 0 models the collapse of interstellar cloud, the following corollary reveals a pointwise condition for mass concentration, $\rho \rightarrow \infty$, which interestingly preludes the birth of new stars.

Corollary 1.1. Consider the Euler–Poisson system (1.1a), (1.1b) with c > 0, k < 0 subject to initial data ρ_0 , \mathbf{u}_0 . Then, the solution will lose C^1 regularity at a finite time $t_c < \infty$, if there exists a non-vacuum initial state $\rho_0(\bar{x}) > 0$ with a vanishing initial vorticity, $\nabla \times \mathbf{u}_0(\bar{x}) = 0$, such that the super-critical condition is fulfilled,

div
$$\mathbf{u}_0(\bar{x}) < \operatorname{sgn}(\rho_0(\bar{x}) - c) \sqrt{-nkcF\left(\frac{\rho_0(\bar{x})}{c}\right)}$$
 (1.4)

where $F(\cdot)$ is given in (1.3b). In particular, $\min_x \operatorname{div} \mathbf{u}(t, x) \to -\infty$ and $\max_x \rho(t, x) \to \infty$ as $t \uparrow t_c$.

In the limiting regime as $c \rightarrow 0+$, condition (1.4) converges to a super-critical condition which is summarized by the following result, the proof of which is given in Section 5.

Corollary 1.2. Consider the n-dimensional Euler–Poisson system (1.1a), (1.1b) with c = 0, k < 0 subject to initial data ρ_0 , \mathbf{u}_0 . Assume a vanishing initial vorticity everywhere, $\nabla \times \mathbf{u}_0 \equiv 0$. Then, the solution will lose C^1 regularity at a finite time $t_c < \infty$, if either (i) n = 1, 2 or (ii) $n \geq 3$ and there exists a non-vacuum initial state $\rho_0(\bar{x}) > 0$ such that

$$\operatorname{div} \mathbf{u}_0(\bar{x}) < \sqrt{-\frac{2nk\rho_0(\bar{x})}{n-2}}, \quad n \ge 3.$$
(1.5)

In other words, the pressureless and vorticity-free one- and two-dimensional attractive Euler–Poisson systems with zero background (c = 0), inevitably collapse to singularity at a finite time. On the other hand, the complete characterization of finite-time breakdown in higher dimensions remains open, even for c = 0.

The concept of Critical Threshold and associated methodology is originated and developed in a series of papers by Engelberg, Liu and Tadmor [7], Liu and Tadmor [9,8] and more. It first appears in [7] regarding pointwise criteria for C^1 solution regularity of 1D EP system. The key argument in that paper is based on the convective derivative along particle paths $' = \partial_t + \mathbf{u} \cdot \nabla$. It makes it possible to obtain a 2-by-2 ODE system for u_x and ρ along particle paths – the so-called Lagrangian formulation. Phase plane analysis is then employed to study the finiteness of the ODE solutions and therefore C^1 regularity of the PDE solution. Similar results stay valid for Euler–Poisson systems with geometric symmetry in higher dimensions [3,8]. To treat genuinely multi-D cases, Liu and Tadmor introduce in [8] the method of spectral dynamics which relies on the ODE system governing eigenvalues of

$$M := \nabla \mathbf{u}$$
,

which is the velocity gradient matrix, along particle paths. They identify if-and-only-if, pointwise conditions for global existence of C^1 solutions to *restricted* Euler–Poisson systems. Chae and Tadmor [10] further extend the Critical Threshold argument to multi-D full Euler–Poisson systems (1.2a), (1.2b) with attractive forcing k < 0. Their result, however, offers a blow-up region $\nabla \times \mathbf{u}_0 = 0$, div $\mathbf{u}_0 < -\sqrt{-nkc}$ which is only a subset of the blow-up region in (1.4). This subset is to the left of the solid line $d \leq d^- := -\sqrt{-nkc}$ depicted in Fig. 4.1. Finally, a recent paper by Tadmor and Wei [12] reveals the critical threshold phenomena in the 1D Euler–Poisson system with pressure.

When tracking other results on the well-posedness of Euler–Poisson equations, we find them commonly relying on (the vast family of) energy methods and thus fundamentally differ from our pointwise results obtained via the Lagrangian approach. With a repulsive force k > 0, we refer to [13,14] for the global existence of classical solutions with small data and [15] for the nonexistence of global solutions. With attractive force k < 0, see [1] for local regularity of classical solutions and [16,17] for nonexistence results. Discussions on weak solutions of Euler–Poisson systems can be found in e.g. [18–20]. We also refer to [21–25] and references therein for steady-state solutions. The study of the Euler–Poisson system with damping relaxation can be found in e.g. [26–28].

The rest of this paper is organized as follows. In Section 2, we follow the idea of [10] to derive along particle paths an ODE system governing the dynamics of eigenvalues for $S := \frac{1}{2}(M + M^{\top})$. This is a variation of the spectral dynamics for *M* introduced in [8]. We then derive in Section 3 a closed 2 × 2 ODE system (3.1) at the cost of turning one equation into inequality. By the comparison principle, this inequality is in favor of blow-up. Thus, with the inequality sign being replaced with an equality sign, a modified ODE system is used to yield sub-solutions and to study a blow-up scenario for the original system. Section 4, devoted to the modified system, reveals the Critical Threshold for such a system. Consequently, a pointwise blow-up condition for the original system is identified. Finally, in Section 5 we prove Corollary 1.2 regarding the Euler–Poisson system with zero background using techniques developed in previous sections.

2. Spectral dynamics

We examine the gradient matrix $M = \nabla \mathbf{u}$ and its symmetric part, $S = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top})$. Both matrices are used to study the spectral dynamics of Euler systems (see e.g. [8] for M and [10] for S). The relation between the spectra of M and S is described in the following.

Proposition 2.1. Let $\{\lambda_M\}$ denote the eigenvalues of M and $\{\lambda_S\}$ for S. Then

$$\sum_{\lambda_M} \lambda_M = \sum_{\lambda_S} \lambda_S = \operatorname{div} \mathbf{u}, \tag{2.1}$$

$$\sum_{\lambda_M} \lambda_M^2 = \sum_{\lambda_S} \lambda_S^2 - \frac{1}{2} |\boldsymbol{\omega}|^2.$$
(2.2)

Fig. 4.1. Phase plane of (4.1) with blow-up region $\Omega_1 \cup \Omega_2$ which extends the Chae–Tadmor region [10] $d \leq d^-$.

Here, ω is the $\frac{n(n-1)}{2}$ vorticity vector which consists of the off-diagonal entries of $A := \frac{1}{2} (\nabla \mathbf{u} - (\nabla \mathbf{u})^{\top})$.

Proof. Use identity M = S + A and the skew-symmetry of A,

$$\sum_{\lambda_M} \lambda_M = \operatorname{tr}(M) = \operatorname{tr}(S + A) = \operatorname{tr}(S) = \sum_{\lambda_S} \lambda_S$$

Squaring the last identity we have $M^2 = S^2 + A^2 + AS + SA$ and therefore,

$$\sum_{\lambda_M} \lambda_M^2 = \operatorname{tr}(M^2) = \operatorname{tr}(S^2 + A^2 + AS + SA) = \sum_{\lambda_S} \lambda_S^2 + \operatorname{tr}(A^2)$$

Note that AS + SA is skew-symmetric and thus traceless. A simple calculation yields $tr(A^2) = -\frac{1}{2}|\omega|^2$. \Box

Following [8], we turn to study the dynamics of M along particle paths. Take the gradient of (1.2b) to find

$$M' + M^2 \equiv M_t + u \cdot \nabla M + M^2 = -R(\rho - 1),$$
 (2.3)

where *R* stands for the *Riesz matrix*, $R = \{R_{ij}\} := \{\partial_{x_i x_j} \Delta^{-1}\}$.

The trace of (2.3) then yields that the divergence, d := tr(M), is governed by

$$d' = -\sum_{\lambda_M} \lambda_M^2 - (\rho - 1),$$

and in view of (2.2),

$$d' = -\sum_{\lambda_S} \lambda_S^2 + \frac{1}{2} |\omega|^2 - (\rho - 1).$$
(2.4)

We now make the first observation regarding the invariance of the vorticity ω : taking the skew-symmetric part of the *M*- equation (2.3),

$$A' + AS + SA = 0. (2.5)$$

It follows that if the initial vorticity vanishes, $\omega_0(\bar{x}) \mapsto \nabla \times \mathbf{u}_0(\bar{x}) = 0$, then by (2.5), $\omega \mapsto \nabla \times \mathbf{u}$ vanishes along the particle path which emanates from \bar{x} . This allows us to decouple the vorticity and divergence dynamics, and (2.4) implies

$$d' = -\sum_{\lambda_S} \lambda_S^2 - (\rho - 1), \qquad \nabla \times \mathbf{u} = 0.$$
(2.6)

Finally, we use Cauchy–Schwartz $\sum \lambda_S^2 \ge \frac{1}{n} (\sum \lambda_S)^2 = \frac{1}{n} d^2$ and the fact that all λ_S are real (due to the symmetry of *S*), to deduce the *inequality*,

$$d' \le -\frac{1}{n}d^2 - (\rho - 1).$$
(2.7a)

This, together with the mass equation (1.2a) which can be written along particle path

$$\rho' = -d\rho, \tag{2.7b}$$

give us the desired closed system which dominates (ρ, d) along particle paths.

Remark 2.1. The approach pursued in this paper will be based on the *inequality* (2.7a) and is therefore limited to derivation of a finite time breakdown. To argue the global regularity, one needs to study the underlying *equality* (2.6), and to this end, to study the trace $\sum \lambda_5^2$. In the two-dimensional case, for example, one can use $\sum \lambda_5^2 = d^2/2 + \eta^2/2$ to replace (2.7a) with

$$d' = -\frac{1}{2}d^2 - \frac{1}{2}\eta^2 - (\rho - 1), \quad \eta := \lambda_{S,2} - \lambda_{S,1}$$

In this framework, global 2D regularity is dictated by the dynamics of the *spectral gap*, $\eta = \lambda_{5,2} - \lambda_{5,1}$, which in turn requires the dynamics of the Riesz transform $R(\rho - 1)$.

3. A comparison principle with a majorant system

The blow-up analysis, driven by the inequalities (2.7),

$$d' \le -\frac{1}{n}d^2 - (\rho - 1), \tag{3.1a}$$

$$\rho' = -d\rho. \tag{3.1b}$$

is carried out by standard comparison with the majorant system

$$e' = -\frac{1}{n}e^2 - (\zeta - 1), \tag{3.2a}$$

$$\zeta' = -e\zeta. \tag{3.2b}$$

The following proposition guarantees the monotonicity of the solution operator associated with (3.1).

Lemma 3.1. The following monotone relation between system (3.1) and system (3.2) is invariant forward in time,

$$\begin{cases} d(0) < e(0) \\ 0 < \zeta(0) < \rho(0) \end{cases} \text{ implies } \begin{cases} d(t) < e(t) \\ 0 < \zeta(t) < \rho(t) \end{cases} \text{ for } t \ge 0, (3.3) \end{cases}$$

as long as all solutions remain finite on the time interval [0, t].

Proof. Invariance of positivity of ζ is a direct consequence of (3.2b) and finiteness of *e*. The rest can be proved by contradiction. Suppose t_1 is the earliest time when (3.3) is violated. Then,

$$\zeta(t_1) = \zeta(0) \exp\left(-\int_0^{t_1} e(t)dt\right) < \rho(0) \exp\left(-\int_0^{t_1} d(t)dt\right)$$

= $\rho(t_1).$ (3.4)

Therefore, we are left with only one possibility, namely, $e(t_1) = d(t_1)$. Subtracting (3.1a) from (3.2a),

$$(e-d)' \ge -\frac{1}{n}(e^2 - d^2) - (\zeta - \rho),$$
 (3.5)

and by (3.4), we find that at $t = t_1$,

RHS of $(3.5)_{|t=t_1|} = 0 - [\zeta(t_1) - \rho(t_1)] > 0.$

However, this contradicts the negativity of the expression on the left of (3.5), since e(t) - d(t) > 0 for all $t < t_1$ and vanishes at $t = t_1$ which imply that

LHS of
$$(3.5)_{|t=t_1} = (e(t_1) - d(t_1))' \le 0.$$

In the next section, we employ phase plane analysis on the modified system (3.2). When translated in terms of the original system (3.1), however, such analysis can only yield blow-up results and is insufficient for global existence results. In other words, estimate (3.3) is only useful for proving $d \searrow -\infty$, the key mechanism for blow-up of C^1 solutions.

4. Stability analysis of the majorant system

We shall prove the blow-up of the majorant system (3.2), $e(t) \rightarrow -\infty$ as $t \uparrow t_c$, which in turn, by Lemma 3.1 implies $d(t) \rightarrow -\infty$. Abusing notations, we express the majorant system in terms of the original variables $(e, \zeta) \mapsto (d, \rho)$:

$$d' = -\frac{1}{n}d^2 - (\rho - 1), \tag{4.1a}$$

$$\rho' = -d\rho. \tag{4.1b}$$

The (in-)stability analysis of (4.1) hinges on the path invariants of this system. To this end, we use the same *q*-transformation employed in [29,9]: setting $q := d^2$ and differentiate along the path $\{(t, X(a, t)) | X_t(a, t) = u(t, X(a, t)), X(a, 0) = a\}$, we find

$$\frac{\mathrm{d}q}{\mathrm{d}\rho} = 2\mathrm{d}\frac{\mathrm{d}'}{\rho'} = \frac{2}{n\rho}q + 2\left(1 - \frac{1}{\rho}\right),$$
 which yields

 $\frac{d}{d\rho} \left(q\rho^{-\frac{2}{n}} \right) = 2(1 - \rho^{-1})\rho^{-\frac{2}{n}}.$

Upon integration, we arrive at the following key observation.

Lemma 4.1. The majorant system (4.1) is equipped with the path invariant,

$$I(d(t), \rho(t)) = I(d_0, \rho_0),$$

along each path (t, x(t)) initiated with a non-vacuum state $(d_0, \rho_0 > 0)$. Here,

$$I(d, \rho) := d^2 \rho^{-\frac{2}{n}} - 2 \int_1^{\rho} (1 - r^{-1}) r^{-\frac{2}{n}} dr$$

= $\rho^{-\frac{2}{n}} \left(d^2 - nF(\rho) \right),$ (4.2)

where $F(\cdot)$ is specified in (1.3b).

It is a simple calculation to show that the majorant system (4.1) admits three distinct critical points (see Fig. 4.1):

$$(d^*, \rho^*) := (0, 1), \quad (d^{\pm}, \rho^{\pm}) := (\pm \sqrt{n}, 0).$$

and that (0, 1) is a saddle point, $(-\sqrt{n}, 0)$ a nodal source and $(\sqrt{n}, 0)$ a nodal sink. The separatrix is given by the zero level set $I(d, \rho) = 0$. Moreover, the right branch of the separatrix, $d = \sqrt{nF(\rho)}$ connects critical points (0, 1) and $(\sqrt{n}, 0)$ while the left branch, $d = -\sqrt{nF(\rho)}$ connects (0, 1) and $(-\sqrt{n}, 0)$.

By inspection of the phase plane in Fig. 4.1, we postulate the following invariant region of finite-time blow-up for the modified system (4.1),

$$\Omega = \Omega_1 \cup \Omega_2 = \{ (d, \rho) \mid d < \operatorname{sgn}(\rho - 1)\sqrt{nF(\rho)} \}$$
(4.3a) where

$$\Omega_1 := \{ (d, \rho) \mid I(d, \rho) > 0 \text{ and } d < 0 \text{ and } \rho > 0 \},$$
(4.3b)

$$\Omega_2 := \{ (d, \rho) \mid I(d, \rho) < 0 \text{ and } \rho > 1 \}.$$

$$(4.3c)$$

Lemma 4.2. Consider the modified system (4.1), equipped with initial data (d_0, ρ_0) . If $(d_0, \rho_0) \in \Omega$, then div $\mathbf{u} \to -\infty$ and $\rho \to \infty$ at a finite time.

Proof. We begin by recalling (1.3b), consult (4.2),

$$F(\rho) = \frac{2}{n} \rho^{\frac{2}{n}} \int_{1}^{\rho} (1 - r^{-1}) r^{-\frac{2}{n}} \, \mathrm{d}r.$$

Clearly, F(1) = F'(1) = 0 and a simple calculation shows that $F''(\rho) = \frac{2}{n}\rho^{\frac{2}{n}-2}$, which implies that $F(\rho)$ is a strictly convex function of positive ρ and attains its only minimum at $\rho = 1$,

$$F(\rho) \ge F(1) = 0.$$
 (4.4)

We shall also utilize the invariance of (4.2)

$$d^{2} - nF(\rho) = \rho^{\frac{2}{n}}I_{0}, \qquad I_{0} = I(d_{0}, \rho_{0}).$$
(4.5)

We now turn to discuss the two possible blow-up scenarios, depending whether the initial data (d_0, ρ_0) belong to the blow-up regions Ω_1 or Ω_2 given in (4.3).

Case #1. Assume that $(d_0, \rho_0) \in \Omega_1$ so that the invariant *I* remains a *positive* constant

In this case, *d* remains negative, for otherwise, setting d = 0 in (4.5) would result in $F(\rho) = -\rho^{\frac{2}{n}}I/n < 0$, violating (4.4). Thus, (4.5) and (4.4) yield an upper bound,

$$d \leq -\rho^{\frac{1}{n}}\sqrt{I}.$$

Then, by (4.1b), we have a Riccati type of equation $\rho' \ge \sqrt{I}\rho^{1+\frac{1}{n}}$ for which the solution exhibits blow-up $\rho \to +\infty$ and the divergence $d = \operatorname{div} \mathbf{u}$ approaches $-\infty$ at a finite time due to (4.5).

Case #2. Assume that $(d_0, \rho_0) \in \Omega_2$ so that the invariant *I* remains a *negative* constant

In this case, $\rho - 1$ remains positive, for otherwise setting $\rho = 1$ in (4.5) would result in $F(1) = (d^2 - I)/n > 0$ in contradiction to (4.4). Now, for $\rho > 1$ we have

$$F(\rho) = \frac{2}{n} \rho^{2/n} \int_{1}^{\rho} \left(1 - \frac{1}{r}\right) \frac{1}{r^{2/n}} \mathrm{d}r \le \frac{2}{n} \rho^{2/n} (\rho - 1).$$

This together with (4.5) yield

$$\frac{2}{n}\rho^{2/n}(\rho-1) \ge F(\rho) = \frac{1}{n}\left(d^2 - \rho^{2/n}I\right) \ge -\frac{1}{n}\rho^{2/n}I$$

and the lower bound, $\rho - 1 \ge -I/2$ follows. Thus, by (4.1a), we end up with a Riccati type of equation

$$d' \leq -\frac{d^2}{n} + \frac{1}{2}.$$

Since the invariant *I* remains a negative constant, the solution exhibits blow-up $d = \operatorname{div} \mathbf{u} \to -\infty$ at a finite time even if initially $d_0 > 0$. The density ρ also approaches ∞ in finite time due to (4.5). \Box

The last step of proving the Main theorem is just to combine the comparison principle in Lemma 3.1 with the above lemma. We notice that Ω is an open set and thus given any initial data $(d_0, \rho_0) \in \Omega$ for the original system, we can always find $\varepsilon > 0$ and initial data $(d_0 + \varepsilon, \rho_0 - \varepsilon) \in \Omega$ for the modified system. This latter initial data will lead to a finite time blow-up of the modified system and therefore, by Lemma 3.1, initial data $(d_0, \rho_0) \in \Omega$ will lead to finite time blow-up of the original system.

5. Critical threshold for zero background

We now turn to the attractive Euler–Poisson system (1.1a), (1.1b) with zero background c = 0 and prove Corollary 1.2. For simplicity, we only show the case with k = -1 since a straightforward rescaling argument, $x \rightarrow \sqrt{-kx}$ and $t \rightarrow \sqrt{-kt}$, will cover the case for general k < 0.

Proof of Corollary 1.2. Following the same calculation that leads to the majorant system (4.1a), (4.1b), we arrive at a similar ODE system for the case c = 0, k = -1,

$$d' = -\frac{1}{n}d^2 - \rho, \qquad (5.1a)$$

$$\rho' = -d\rho. \tag{5.1b}$$

Then, as an analogue to the invariant (4.2), we find the corresponding invariant,

$$I(d, \rho) := d^2 \rho^{-\frac{2}{n}} - 2 \int_a^{\rho} r^{-\frac{2}{n}} dr$$

By choosing the constant

$$a = \begin{cases} +\infty, & n = 1, \\ 1, & n = 2, \\ 0, & n \ge 3, \end{cases}$$

we have

$$I(d, \rho) = \begin{cases} d^2 \rho^{-2} + 2\rho^{-1}, & n = 1\\ d^2 \rho^{-1} - 2\ln\rho, & n = 2\\ d^2 \rho^{-\frac{2}{n}} - \frac{2n}{n-2}\rho^{1-\frac{2}{n}}, & n \ge 3. \end{cases}$$
(5.2)

Using the positivity of ρ and d^2 in (5.2), we have $I \ge 2\rho^{-1} > 0$ for n = 1 and $I \ge -2 \ln \rho$ for n = 2. Both estimates imply that ρ is bounded from below by a positive constant. In the case of $n \ge 3$, the sup-critical condition (1.5) implies I < 0. Thus, by (5.2), we have $0 > I \ge -\frac{2n}{n-2}\rho^{1-\frac{2}{n}}$ which, again, implies ρ is greater than a positive constant.

Therefore, by (5.1a), d satisfies a differential inequality

$$d' \leq -\frac{d^2 + \alpha}{n}$$

with positive constant α . Obviously, d(t) approaches $-\infty$ at a time no later than $\frac{n\pi}{2\sqrt{\alpha}}$. \Box

Acknowledgment

Research was supported in part by NSF grants 07-07949, 07-57227 and ONR grant N000140910385.

References

 Tetu Makino, On a local existence theorem for the evolution equation of gaseous stars, in: Patterns and Waves, in: Stud. Math. Appl., vol. 18, North-Holland, Amsterdam, 1986, pp. 459–479.

- [2] Uwe Brauer, Alan Rendall, Oscar Reula, The cosmic no-hair theorem and the non-linear stability of homogeneous Newtonian cosmological models, Classical Quantum Gravity 11 (9) (1994) 2283–2296.
- [3] Michael P. Brenner, Thomas P. Witelski, On spherically symmetric gravitational collapse, J. Statist. Phys. 93 (3-4) (1998) 863–899.
- [4] Yinbin Deng, Tai-Ping Liu, Tong Yang, Zheng-an Yao, Solutions of Euler-Poisson equations for gaseous stars, Arch. Ration. Mech. Anal. 164 (3) (2002) 261–285.
- [5] Lee Hartmann, Accretion processes in star formation, in: Cambridge Astrophysics Series, vol. 32, Cambridge University Press, 2009.
- [6] Grégoire Loeper, Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems, Comm. Partial Differential Equations 30 (7–9) (2005) 1141–1167.
- [7] Shlomo Engelberg, Hailiang Liu, Eitan Tadmor, Critical thresholds in Euler-Poisson equations, Indiana Univ. Math. J. 50 (Special Issue) (2001) 109–157. Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000).
- [8] Hailiang Liu, Eitan Tadmor, Spectral dynamics of the velocity gradient field in restricted flows, Comm. Math. Phys. 228 (3) (2002) 435–466.
- [9] Hailiang Liu, Eitan Tadmor, Critical thresholds in 2D restricted Euler-Poisson equations, SIAM J. Appl. Math. 63 (6) (2003) 1889–1910. (electronic).
- [10] Dongho Chae, Eitan Tadmor, On the finite time blow-up of the Euler–Poisson equations in *R*², Commun. Math. Sci. 6 (3) (2008) 785–789.
- [11] Hailiang Liu, Eitan Tadmor, Critical thresholds and conditional stability for Euler equations and related models, in: Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2003, pp. 227–240.
- [12] Eitan Tadmor, Dongming Wei, On the global regularity of subcritical Euler-Poisson equations with pressure, J. Eur. Math. Soc. (JEMS) 10 (3) (2008) 757–769.
- [13] Yan Guo, Smooth irrotational flows in the large to the Euler-Poisson system in R³⁺¹, Comm. Math. Phys. 195 (2) (1998) 249–265.
- [14] Stéphane Cordier, Emmanuel Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations 25 (5–6) (2000) 1099–1113.
- [15] Benoît Perthame, Nonexistence of global solutions to Euler-Poisson equations for repulsive forces, Japan J. Appl. Math. 7 (2) (1990) 363–367.
- [16] Tetu Makino, Blowing up solutions of the Euler-Poisson equation for the evolution of gaseous stars, in: Proceedings of the Fourth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics, Kyoto, 1991, vol. 21, 1992, pp. 615–624.
- [17] Tetu Makino, Benoît Perthame, Sur les solutions à symétrie sphérique de l'équation d'Euler-Poisson pour l'évolution d'étoiles gazeuses, Japan J. Appl. Math. 7 (1) (1990) 165–170.
- [18] Bo Zhang, Global existence and asymptotic stability to the full 1D hydrodynamic model for semiconductor devices, Indiana Univ. Math. J. 44 (3) (1995) 971–1005.
- [19] Pierangelo Marcati, Roberto Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal. 129 (2) (1995) 129–145.
- [20] F. Poupaud, M. Rascle, J.-P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data, J. Differential Equations 123 (1) (1995) 93–121.
- [21] Irene Martínez Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Differential Equations 17 (3-4) (1992) 553-577.
- [22] Pierre Degond, Peter A. Markowich, A steady state potential flow model for semiconductors, Ann. Mat. Pura Appl. 165 (4) (1993) 87–98.
- [23] T. Luo, J. Smoller, Nonlinear dynamical stability of newtonian rotating and nonrotating white dwarfs and rotating supermassive stars, Comm. Math. Phys. (2008) 166-+.
- [24] Tao Luo, Joel Smoller, Rotating fluids with self-gravitation in bounded domains, Arch. Ration. Mech. Anal. 173 (3) (2004) 345–377.
- [25] Gerhard Rein, Non-linear stability of gaseous stars, Arch. Ration. Mech. Anal. 168 (2) (2003) 115–130.
- [26] Dehua Wang, Global solutions and relaxation limits of Euler-Poisson equations, Z. Angew. Math. Phys. 52 (4) (2001) 620–630.
- [27] Dehua Wang, Gui-Qiang Chen, Formation of singularities in compressible Euler-Poisson fluids with heat diffusion and damping relaxation, J. Differential Equations 144 (1) (1998) 44–65.
- [28] Tao Luo, Roberto Natalini, Zhouping Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math. 59 (3) (1999) 810–830 (electronic).
- [29] Hailiang Liu, Eitan Tadmor, Rotation prevents finite-time breakdown, Phys. D 188 (3-4) (2004) 262–276.