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which leads to a finite-time breakdown of the Euler–Poisson equations in arbitrary dimension n.
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1. Introduction

The pressure-less Euler–Poisson (EP) equations in dimension
n ≥ 1 are

ρt + div (ρu) = 0 (1.1a)

ut + u · ∇u = k∇∆−1(ρ − c), (1.1b)

governing the unknown density ρ = ρ(t, x) : R+×Rn 7→ R+ and
velocity u = u(t, x) : R+ × Rn 7→ Rn subject to initial conditions
ρ(0, x) = ρ0(x) and u(0, x) = u0(x). They involve two constants:
(i) a fixed background state c ≥ 0 — typical cases include the case
of zero background, c = 0, or the case of a nonzero background
given by the average mass, c =

∫
ρ(t, x)dx =

∫
ρ0(x)dx; and (ii)

a constant k which parameterizes the repulsive k > 0 or attrac-
tive k < 0 forcing, governed by the Poisson potential∆−1(ρ − c).
The EP system appears in numerous applications including semi-
conductors and plasma physics (k > 0) and the collapse of stars
due to self gravitation (k < 0) [1–4]. In particular, the pressureless
EPmodel becomes relevant in interstellar cloudswhere gravitional
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forces dominate pressure gradient, [5], for example, or in the con-
text of the Euler–Monge–Ampère systems and their quasi-neutral
limits to the incompressible Euler equations [6].
This paper is restricted to the attractive case, k < 0. We begin

by setting c = 1, k = −1 in (1.1a), (1.1b) to arrive at the unit-free
EP system,

ρt + div (ρu) = 0, (1.2a)

ut + u · ∇u = −∇∆−1(ρ − 1). (1.2b)

Our discussion remains valid for the general physical parameters
c ≥ 0, k < 0 upon a simple rescaling and limiting arguments,
outlined in Corollary 1.1 below for c > 0 and Corollary 1.2 for the
case of zero background c = 0.
We are concerned here with the persistence of C1 regularity for

solutions of the attractive EP system. Our Main theorem reveals a
pointwise criterion on the initial data, a so-called critical threshold
criterion [7–9], that leads to finite time blow-up of∇u. It quantifies
the balance between the two term divu and ρ, which govern two
competing mechanisms that dictate the C1 regularity of EP flows.
Our result also stands out as a generalization of several existing
results [7,10,11,9] for which further discussion is given after the
Main theorem and its corollary.

Main Theorem 1.1. Consider the n-dimensional, attractive Euler–
Poisson system (1.2a), (1.2b) subject to initial data ρ0, u0. Then, the
solution will lose C1 regularity at a finite time t = tc < ∞, if there
exists a non-vacuum initial state ρ0(x̄) > 0 with vanishing initial
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vorticity, ∇ × u0(x̄) = 0, at some x̄ ∈ Rn such that the following
sup-critical condition is fulfilled,

divu0(x̄) < sgn(ρ0(x̄)− 1)
√
nF(ρ0(x̄)), (1.3a)

where

F(ρ) :=

1+ 2ρ
n− 2

−
nρ2/n

n− 2
, n 6= 2,

1− ρ + ρ ln ρ, n = 2.
(1.3b)

In particular, minx divu(t, x) → −∞ and maxx ρ(t, x) → ∞ as
t ↑ tc .

Proof. Combine Lemmas 3.1 and 4.2, while noting that the curve

divu = sgn(ρ − 1)
√
nF(ρ),

is the separatrix along the boundary of the blow-up region Ω =
Ω1 ∪Ω2 defined in (4.3) and illustrated in Fig. 4.1. �

We note in passing that, by classical arguments, the force-free
Euler system ut + u · ∇u = 0 exhibits finite time blow-up if
and only if there exists at least one negative eigenvalue of ∇u0(x̄).
In the above theorem, however, finite-time blow-up can occur
solely depending on the initial profile of divu0 and ρ0 regardless
of individual eigenvalues of ∇u0.
We also note that, by rescaling ρ to ρ/c , x to

√
−kc x and t to√

−kc t , the Main theorem immediately applies to the EP system
(1.1a), (1.1b) with physical parameters. Since the EP system with
k < 0 models the collapse of interstellar cloud, the following
corollary reveals a pointwise condition for mass concentration,
ρ →∞, which interestingly preludes the birth of new stars.

Corollary 1.1. Consider the Euler–Poisson system (1.1a), (1.1b)with
c > 0, k < 0 subject to initial data ρ0, u0. Then, the solution will
lose C1 regularity at a finite time tc < ∞, if there exists a non-
vacuum initial state ρ0(x̄) > 0 with a vanishing initial vorticity,
∇ × u0(x̄) = 0, such that the super-critical condition is fulfilled,

divu0(x̄) < sgn(ρ0(x̄)− c)

√
−nkcF

(
ρ0(x̄)
c

)
(1.4)

where F(·) is given in (1.3b). In particular, minx divu(t, x) → −∞
andmaxx ρ(t, x)→∞ as t ↑ tc .

In the limiting regime as c → 0+, condition (1.4) converges
to a super-critical condition which is summarized by the following
result, the proof of which is given in Section 5.

Corollary 1.2. Consider the n-dimensional Euler–Poisson system
(1.1a), (1.1b)with c = 0, k < 0 subject to initial dataρ0,u0. Assume a
vanishing initial vorticity everywhere,∇×u0 ≡ 0. Then, the solution
will lose C1 regularity at a finite time tc < ∞, if either (i) n = 1, 2
or (ii) n ≥ 3 and there exists a non-vacuum initial state ρ0(x̄) > 0
such that

divu0(x̄) <
√
−
2nkρ0(x̄)
n− 2

, n ≥ 3. (1.5)

In other words, the pressureless and vorticity-free one- and
two-dimensional attractive Euler–Poisson systems with zero
background (c = 0), inevitably collapse to singularity at a finite
time. On the other hand, the complete characterization of finite-
time breakdown in higher dimensions remains open, even for c =
0.
The concept of Critical Threshold and associated methodology

is originated and developed in a series of papers by Engelberg, Liu
and Tadmor [7], Liu and Tadmor [9,8] and more. It first appears
in [7] regarding pointwise criteria for C1 solution regularity of
1D EP system. The key argument in that paper is based on the
convective derivative along particle paths ′ = ∂t+u ·∇ . It makes it
possible to obtain a 2-by-2 ODE system for ux and ρ along particle
paths — the so-called Lagrangian formulation. Phase plane analysis
is then employed to study the finiteness of the ODE solutions
and therefore C1 regularity of the PDE solution. Similar results
stay valid for Euler–Poisson systems with geometric symmetry in
higher dimensions [3,8]. To treat genuinely multi-D cases, Liu and
Tadmor introduce in [8] the method of spectral dynamics which
relies on the ODE system governing eigenvalues of

M := ∇u,

which is the velocity gradient matrix, along particle paths. They
identify if-and-only-if, pointwise conditions for global existence
of C1 solutions to restricted Euler–Poisson systems. Chae and
Tadmor [10] further extend the Critical Threshold argument to
multi-D full Euler–Poisson systems (1.2a), (1.2b) with attractive
forcing k < 0. Their result, however, offers a blow-up region
∇ × u0 = 0, divu0 < −

√
−nkc which is only a subset of the

blow-up region in (1.4). This subset is to the left of the solid line
d ≤ d− := −

√
−nkc depicted in Fig. 4.1. Finally, a recent paper by

Tadmor and Wei [12] reveals the critical threshold phenomena in
the 1D Euler–Poisson system with pressure.
When tracking other results on the well-posedness of Eu-

ler–Poisson equations, we find them commonly relying on (the
vast family of) energymethods and thus fundamentally differ from
our pointwise results obtained via the Lagrangian approach. With
a repulsive force k > 0, we refer to [13,14] for the global existence
of classical solutions with small data and [15] for the nonexistence
of global solutions. With attractive force k < 0, see [1] for local
regularity of classical solutions and [16,17] for nonexistence re-
sults. Discussions on weak solutions of Euler–Poisson systems can
be found in e.g. [18–20]. We also refer to [21–25] and references
therein for steady-state solutions. The study of the Euler–Poisson
system with damping relaxation can be found in e.g. [26–28].
The rest of this paper is organized as follows. In Section 2, we

follow the idea of [10] to derive along particle paths an ODE system
governing the dynamics of eigenvalues for S := 1

2 (M + M
>). This

is a variation of the spectral dynamics forM introduced in [8]. We
then derive in Section 3 a closed 2 × 2 ODE system (3.1) at the
cost of turning one equation into inequality. By the comparison
principle, this inequality is in favor of blow-up. Thus, with the
inequality sign being replaced with an equality sign, a modified
ODE system is used to yield sub-solutions and to study a blow-
up scenario for the original system. Section 4, devoted to the
modified system, reveals the Critical Threshold for such a system.
Consequently, a pointwise blow-up condition for the original
system is identified. Finally, in Section 5 we prove Corollary 1.2
regarding the Euler–Poisson system with zero background using
techniques developed in previous sections.

2. Spectral dynamics

We examine the gradient matrix M = ∇u and its symmetric
part, S = 1

2

(
∇u+ (∇u)>

)
. Both matrices are used to study the

spectral dynamics of Euler systems (see e.g. [8] for M and [10] for
S). The relation between the spectra ofM and S is described in the
following.

Proposition 2.1. Let {λM} denote the eigenvalues of M and {λS} for
S. Then∑
λM

λM =
∑
λS

λS = divu, (2.1)

∑
λM

λ2M =
∑
λS

λ2S −
1
2
|ω|2. (2.2)
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Fig. 4.1. Phase plane of (4.1) with blow-up regionΩ1 ∪Ω2 which extends the Chae–Tadmor region [10] d ≤ d− .
Here,ω is the n(n−1)2 vorticity vector which consists of the off-diagonal
entries of A := 1

2

(
∇u− (∇u)>

)
.

Proof. Use identityM = S + A and the skew-symmetry of A,∑
λM

λM = tr(M) = tr(S + A) = tr(S) =
∑
λS

λS .

Squaring the last identity we have M2 = S2 + A2 + AS + SA and
therefore,∑
λM

λ2M = tr(M
2) = tr(S2 + A2 + AS + SA) =

∑
λS

λ2S + tr(A
2).

Note that AS + SA is skew-symmetric and thus traceless. A simple
calculation yields tr(A2) = − 12 |ω|

2. �

Following [8], we turn to study the dynamics ofM along particle
paths. Take the gradient of (1.2b) to find

M ′ +M2 ≡ Mt + u · ∇M +M2 = −R(ρ − 1), (2.3)

where R stands for the Riesz matrix, R = {Rij} := {∂xixj∆
−1
}.

The trace of (2.3) then yields that the divergence, d := tr(M), is
governed by

d′ = −
∑
λM

λ2M − (ρ − 1),

and in view of (2.2),

d′ = −
∑
λS

λ2S +
1
2
|ω|2 − (ρ − 1). (2.4)

We now make the first observation regarding the invariance of
the vorticityω: taking the skew-symmetric part of theM- equation
(2.3),

A′ + AS + SA = 0. (2.5)

It follows that if the initial vorticity vanishes,ω0(x̄) 7→ ∇×u0(x̄) =
0, then by (2.5), ω 7→ ∇ × u vanishes along the particle path
which emanates from x̄. This allows us to decouple the vorticity
and divergence dynamics, and (2.4) implies

d′ = −
∑
λS

λ2S − (ρ − 1), ∇ × u = 0. (2.6)

Finally, we use Cauchy–Schwartz
∑
λ2S ≥

1
n

(∑
λS
)2
=

1
nd
2 and

the fact that all λS are real (due to the symmetry of S), to deduce
the inequality,

d′ ≤ −
1
n
d2 − (ρ − 1). (2.7a)
This, together with the mass equation (1.2a) which can be written
along particle path

ρ ′ = −dρ, (2.7b)
give us the desired closed system which dominates (ρ, d) along
particle paths.

Remark 2.1. The approach pursued in this paper will be based
on the inequality (2.7a) and is therefore limited to derivation of a
finite time breakdown. To argue the global regularity, one needs
to study the underlying equality (2.6), and to this end, to study the
trace

∑
λ2S . In the two-dimensional case, for example, one can use∑

λ2S = d
2/2+ η2/2 to replace (2.7a) with

d′ = −
1
2
d2 −

1
2
η2 − (ρ − 1), η := λS,2 − λS,1.

In this framework, global 2D regularity is dictated by the dynamics
of the spectral gap, η = λS,2 − λS,1, which in turn requires the
dynamics of the Riesz transform R(ρ − 1).

3. A comparison principle with a majorant system

The blow-up analysis, driven by the inequalities (2.7),

d′ ≤ − 1nd
2
− (ρ − 1), (3.1a)

ρ ′ = −dρ. (3.1b)
is carried out by standard comparison with the majorant system

e′ = − 1n e
2
− (ζ − 1), (3.2a)

ζ ′ = −eζ . (3.2b)
The following proposition guarantees the monotonicity of the

solution operator associated with (3.1).

Lemma 3.1. The following monotone relation between system (3.1)
and system (3.2) is invariant forward in time,{
d(0) < e(0)
0 < ζ(0) < ρ(0) implies

{
d(t) < e(t)
0 < ζ(t) < ρ(t) for t ≥ 0, (3.3)

as long as all solutions remain finite on the time interval [0, t].

Proof. Invariance of positivity of ζ is a direct consequence of
(3.2b) and finiteness of e. The rest can be proved by contradiction.
Suppose t1 is the earliest time when (3.3) is violated. Then,

ζ (t1) = ζ (0) exp
(
−

∫ t1

0
e(t)dt

)
< ρ(0) exp

(
−

∫ t1

0
d(t)dt

)
= ρ(t1). (3.4)
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Therefore, we are left with only one possibility, namely, e(t1) =
d(t1). Subtracting (3.1a) from (3.2a),

(e− d)′ ≥ −
1
n
(e2 − d2)− (ζ − ρ), (3.5)

and by (3.4), we find that at t = t1,

RHS of (3.5)|t=t1 = 0− [ζ (t1)− ρ(t1)] > 0.

However, this contradicts the negativity of the expression on the
left of (3.5), since e(t) − d(t) > 0 for all t < t1 and vanishes at
t = t1 which imply that

LHS of (3.5)|t=t1 =
(
e(t1)− d(t1)

)′
≤ 0. �

In the next section, we employ phase plane analysis on the
modified system (3.2). When translated in terms of the original
system (3.1), however, such analysis can only yield blow-up results
and is insufficient for global existence results. In other words,
estimate (3.3) is only useful for proving d ↘ −∞, the key
mechanism for blow-up of C1 solutions.

4. Stability analysis of the majorant system

We shall prove the blow-up of the majorant system (3.2),
e(t) → −∞ as t ↑ tc , which in turn, by Lemma 3.1 implies
d(t)→ −∞. Abusing notations, we express the majorant system
in terms of the original variables (e, ζ ) 7→ (d, ρ):

d′ = −
1
n
d2 − (ρ − 1), (4.1a)

ρ ′ = −dρ. (4.1b)
The (in-)stability analysis of (4.1) hinges on the path invariants

of this system. To this end, we use the same q-transformation
employed in [29,9]: setting q := d2 and differentiate along the path
{(t, X(a, t)) | Xt(a, t) = u(t, X(a, t)), X(a, 0) = a}, we find
dq
dρ
= 2d

d′

ρ ′
=
2
nρ
q+ 2

(
1−

1
ρ

)
,

which yields
d
dρ

(
qρ−

2
n

)
= 2(1− ρ−1)ρ−

2
n .

Upon integration, we arrive at the following key observation.

Lemma 4.1. The majorant system (4.1) is equipped with the path
invariant,

I(d(t), ρ(t)) = I(d0, ρ0),

along each path (t, x(t)) initiated with a non-vacuum state (d0, ρ0 >
0). Here,

I(d, ρ) := d2ρ−
2
n − 2

∫ ρ

1
(1− r−1)r−

2
n dr

= ρ−
2
n
(
d2 − nF(ρ)

)
, (4.2)

where F(·) is specified in (1.3b).

It is a simple calculation to show that themajorant system (4.1)
admits three distinct critical points (see Fig. 4.1):
(d∗, ρ∗) := (0, 1), (d±, ρ±) := (±

√
n, 0).

and that (0, 1) is a saddle point, (−
√
n, 0) a nodal source and

(
√
n, 0) a nodal sink. The separatrix is given by the zero level set

I(d, ρ) = 0. Moreover, the right branch of the separatrix, d =√
nF(ρ) connects critical points (0, 1) and (

√
n, 0) while the left

branch, d = −
√
nF(ρ) connects (0, 1) and (−

√
n, 0).

By inspection of the phase plane in Fig. 4.1, we postulate the
following invariant region of finite-time blow-up for the modified
system (4.1),
Ω = Ω1 ∪Ω2 = {(d, ρ) | d < sgn(ρ − 1)
√
nF(ρ)} (4.3a)

where
Ω1 := {(d, ρ) | I(d, ρ) > 0 and d < 0 and ρ > 0}, (4.3b)
Ω2 := {(d, ρ) | I(d, ρ) < 0 and ρ > 1}. (4.3c)

Lemma 4.2. Consider themodified system (4.1), equippedwith initial
data (d0, ρ0). If (d0, ρ0) ∈ Ω , then divu→ −∞ and ρ →∞ at a
finite time.

Proof. We begin by recalling (1.3b), consult (4.2),

F(ρ) =
2
n
ρ
2
n

∫ ρ

1
(1− r−1)r−

2
n dr.

Clearly, F(1) = F ′(1) = 0 and a simple calculation shows that
F ′′(ρ) = 2

nρ
2
n−2, which implies that F(ρ) is a strictly convex

function of positive ρ and attains its only minimum at ρ = 1,

F(ρ) ≥ F(1) = 0. (4.4)

We shall also utilize the invariance of (4.2)

d2 − nF(ρ) = ρ
2
n I0, I0 = I(d0, ρ0). (4.5)

We now turn to discuss the two possible blow-up scenarios,
depending whether the initial data (d0, ρ0) belong to the blow-up
regionsΩ1 orΩ2 given in (4.3).
Case #1. Assume that (d0, ρ0) ∈ Ω1 so that the invariant I remains
a positive constant

I > 0.

In this case, d remains negative, for otherwise, setting d = 0 in
(4.5) would result in F(ρ) = −ρ

2
n I/n < 0, violating (4.4). Thus,

(4.5) and (4.4) yield an upper bound,

d ≤ −ρ
1
n
√
I.

Then, by (4.1b),wehave a Riccati type of equationρ ′ ≥
√
Iρ1+

1
n for

which the solution exhibits blow-up ρ →+∞ and the divergence
d = divu approaches−∞ at a finite time due to (4.5).
Case #2. Assume that (d0, ρ0) ∈ Ω2 so that the invariant I remains
a negative constant

I < 0.

In this case, ρ − 1 remains positive, for otherwise setting ρ = 1
in (4.5) would result in F(1) = (d2 − I)/n > 0 in contradiction to
(4.4). Now, for ρ > 1 we have

F(ρ) =
2
n
ρ2/n

∫ ρ

1

(
1−

1
r

)
1
r2/n
dr ≤

2
n
ρ2/n(ρ − 1).

This together with (4.5) yield

2
n
ρ2/n(ρ − 1) ≥ F(ρ) =

1
n

(
d2 − ρ2/nI

)
≥ −

1
n
ρ2/nI

and the lower bound, ρ − 1 ≥ −I/2 follows. Thus, by (4.1a), we
end up with a Riccati type of equation

d′ ≤ −
d2

n
+
I
2
.

Since the invariant I remains a negative constant, the solution
exhibits blow-up d = divu→−∞ at a finite time even if initially
d0 > 0. The density ρ also approaches ∞ in finite time due to
(4.5). �

The last step of proving the Main theorem is just to combine
the comparison principle in Lemma 3.1 with the above lemma.
We notice that Ω is an open set and thus given any initial data
(d0, ρ0) ∈ Ω for the original system, we can always find ε > 0
and initial data (d0 + ε, ρ0 − ε) ∈ Ωfor the modified system. This
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latter initial data will lead to a finite time blow-up of the modified
system and therefore, by Lemma 3.1, initial data (d0, ρ0) ∈ Ω will
lead to finite time blow-up of the original system.

5. Critical threshold for zero background

We now turn to the attractive Euler–Poisson system (1.1a),
(1.1b) with zero background c = 0 and prove Corollary 1.2. For
simplicity, we only show the case with k = −1 since a straightfor-
ward rescaling argument, x→

√
−k x and t →

√
−k t , will cover

the case for general k < 0.

Proof of Corollary 1.2. Following the same calculation that leads
to the majorant system (4.1a), (4.1b), we arrive at a similar ODE
system for the case c = 0, k = −1,

d′ = −
1
n
d2 − ρ, (5.1a)

ρ ′ = −dρ. (5.1b)

Then, as an analogue to the invariant (4.2), we find the
corresponding invariant,

I(d, ρ) := d2ρ−
2
n − 2

∫ ρ

a
r−

2
n dr.

By choosing the constant

a =

{
+∞, n = 1,
1, n = 2,
0, n ≥ 3,

we have

I(d, ρ) =


d2ρ−2 + 2ρ−1, n = 1
d2ρ−1 − 2 ln ρ, n = 2

d2ρ−
2
n −

2n
n− 2

ρ1−
2
n , n ≥ 3.

(5.2)

Using the positivity of ρ and d2 in (5.2), we have I ≥ 2ρ−1 > 0
for n = 1 and I ≥ −2 ln ρ for n = 2. Both estimates imply that ρ
is bounded from below by a positive constant. In the case of n ≥ 3,
the sup-critical condition (1.5) implies I < 0. Thus, by (5.2), we
have 0 > I ≥ − 2n

n−2ρ
1− 2n which, again, implies ρ is greater than a

positive constant.
Therefore, by (5.1a), d satisfies a differential inequality

d′ ≤ −
d2 + α
n

with positive constant α. Obviously, d(t) approaches−∞ at a time
no later than nπ

2
√
α
. �
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